Testosterone depletion in adult male rats increases mossy fiber transmission, LTP, and sprouting in area CA3 of hippocampus.
نویسندگان
چکیده
Androgens have dramatic effects on neuronal structure and function in hippocampus. However, androgen depletion does not always lead to hippocampal impairment. To address this apparent paradox, we evaluated the hippocampus of adult male rats after gonadectomy (Gdx) or sham surgery. Surprisingly, Gdx rats showed increased synaptic transmission and long-term potentiation of the mossy fiber (MF) pathway. Gdx rats also exhibited increased excitability and MF sprouting. We then addressed the possible underlying mechanisms and found that Gdx induced a long-lasting upregulation of MF BDNF immunoreactivity. Antagonism of Trk receptors, which bind neurotrophins, such as BDNF, reversed the increase in MF transmission, excitability, and long-term potentiation in Gdx rats, but there were no effects of Trk antagonism in sham controls. To determine which androgens were responsible, the effects of testosterone metabolites DHT and 5α-androstane-3α,17β-diol were examined. Exposure of slices to 50 nm DHT decreased the effects of Gdx on MF transmission, but 50 nm 5α-androstane-3α,17β-diol had no effect. Remarkably, there was no effect of DHT in control males. The data suggest that a Trk- and androgen receptor-sensitive form of MF transmission and synaptic plasticity emerges after Gdx. We suggest that androgens may normally be important in area CA3 to prevent hyperexcitability and aberrant axon outgrowth but limit MF synaptic transmission and some forms of plasticity. The results also suggest a potential explanation for the maintenance of hippocampal-dependent cognitive function after androgen depletion: a reduction in androgens may lead to compensatory upregulation of MF transmission and plasticity.
منابع مشابه
اثر عصاره الکلی سیاهدانه بر هیپوکمپ در موش صحرایی با صرع لب گیجگاهی
Background and Objective: Pathologically, temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity Nigella sativa (NS), this study was undertaken to evaluate the preventive effect of NS on structural changes in hippocampus of kainate-epileptic rat...
متن کاملاثر استیل آل کارنیتین در جلوگیری از تحلیل نورونهای هیپوکمپ و جوانه زدن فیبرهای خزهای در مدل تجربی صرع گیجگاهی در موش صحرایی
Background & Aims : Temporal lobe epilepsy is due to structural and metabolic changes in hippocampus including marked degeneration of neurons. Considering some evidences on antiepileptic and neuroprotective activity of acetyl L carnitine (ALC), this study was undertaken to evaluate the preventive effect of ALC on structural changes in hippocampus in an experimental model of temporal lobe ep...
متن کاملThe effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملEffect of eugenol on lithium-pilocarpine model of epilepsy: behavioral, histological, and molecular changes
Objective(s): Epilepsy establishment gives rise to biochemical and morphological changes in the hippocampus. Oxidative stress, morphological changes, and mossy fiber sprouting (MFS) in the hippocampus underpin the epilepsy establishment. Eugenol is the main component of the essential oil extracted from cloves with the potential to modulate neuronal excitability. Therefore, we investigated the e...
متن کاملIntraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats.
Repeated subconvulsive electrical stimulation of certain areas of the forebrain leads to kindling, a progressive and permanent amplification of evoked epileptiform activity, which is a model for human temporal lobe epilepsy. Recent studies have shown that kindling induces synthesis of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in the hip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2013